CANDY - Tools - Simple outdoor wave propagation models

Translation Frequency – Wavelength (for Vacuum)

Frequency

[MHz]

Wavelength

[m]

c = Frequency * Wavelength

Speed of Light in Vacuum c = 299792 km/s

   →top



Free Space Loss

Frequency

[MHz]

Distance of Antenna

[km]

L = 32.44 + 20 lg (f) + 20 lg (d)

Formula for isotropic antenna and vacuum

Path Loss

[dB]

   →top



Plane Earth (Egli)

Frequency

[MHz]

Distance of Antennas

[km]

Height Base Station

[m]

Height mobile Station

[m]

Factor

(theor. x = 4)
in cities ca. 3.2

L = 87,96 + 20 lg(f) + x*10*lg(d) - 20 lg(hb) - 20 lg(hm)

Path Loss

[dB]

   →top



Okumura Hata

Frequency

[MHz]

Distance of Antennas

[km]

Height Base Station

[m]

Height mobile Station

[m]

Area

1-open, 2-suburban
3-small_city, 4-city

L = 69,55 + 26,16 lg (f) -13,82 lg(hb) + (- 6,55 lg(hb) + 44,9) * lg (d) - K

   1:    K = 4,78*(lg(f)^2 - 18,33 lg(f) + 40,94
   2:    K = 2*(lg(f/28)^2 + 5,4
   3:    K = (1,1 lg(f) -0,7)*hm - (1,56 lg(f) -0,8)
   4:    K = 8,29*(lg(1,54 hm))^2 - 1,1         (for f < 300 MHz)
          K = 3,2(lg(11,7554 hm))^2 -4,97      (for f >= 300 MHz)

Path Loss

[dB]

   →top



COST 231 Hata

Frequency

[MHz]

Distance of Antennas

[km]

Height Base Station

[m]

Height mobile Station

[m]

Area

2-suburban
3-small_city, 4-city

L = 46,3 + 33,9 lg (f) - 13,82 lg(hm) + (- 6,55 lg(hb) + 44,9) * lg (d) + K

   2:    K = 0 dB
   3:    K = 0 dB
   4:    K = 3 dB

Path Loss

[dB]

   →top



COST 231 Walfisch-Ikegami LOS

Frequency

[MHz]

Distance of Antennas

[km]

L = 42.6 + 20 lg (f) + 26 lg (d)

Path Loss

[dB]

   →top



COST 231 Walfisch-Ikegami NLOS

Frequency

[MHz]

Distance of Antennas

[km]

Height Base Station

[m]

Height mobile Station

[m]

Height of Buildings

[m]

Width between Buildings

[m]

Width of Street

[m]

Incident Angle

[grad]

Area

3-small_city, 4-city

L = Lfs + Lrts + Lmsd

   Lfs = Free Space Loss

   Lrts = -16.9 + 10 lg(f) + 20 lg(hr-hm) - 10 lg(w) + Lori
             Lori = -10 + 0.354*phi                (0 <= phi < 35)
             Lori = 2,5 + 0,075(phi - 35)        (35 <= phi < 55)
             Lori = 4,0 - 0,114(phi-55)           (55 <= phi < 90)

   Lmsd = Lbsh + ka + kd *lg(d) + kf* lg(f) - 9*lg(b)
             kf = -4 + 0.7+(f/925 -1)               (small_city)
             kf = -4 + 1.5*(f/925-1)                 (city)
             kd = 18                                         ( hb > hr )
             kd = 33 - 15*hb/hr                        ( hb <= hr )
             ka = 54                                         ( hb > hr )
             ka = 54 - 0.8*(hb-hr)                    ( hb <= hr and d >= 0.5 km )
             ka = 54 -1.6*d*(hb-hr)                 ( hb <= hr abd d < 0.5 km)
             Lbsh = -18*lg(1+hb-hr)                ( hb > hr )
             Lbsh = 0                                       ( hb <= hr )

Path Loss

[dB]

   →top



Link Budget

Frequency

[MHz]

Free Space
Loss or Distance

[dB]
[km]

Power
Transmitter

[dBm]     [mW]

Cable Loss
Transmitter

[dB]

Antenna Gain Transmitter

[dBi]

Antenna Gain Receiver

[dBi]

Cable Loss
Receiver

[dB]

Power
Receiver

[dBm]     [mW]

Fade Margin

[dB]

Lpr = Lpt - Lt + Lgt - Lfs + Lgr - Lr

Calculate

    Power Transmitter
    Power Receiver
    Distance
    Fade margin

...

   →top



Fresnel Zone

Frequency

[MHz]

Distance of Antennas

[km]

Barrier Height

[m]

r-max = 0,5 * sqrt( d * c / f )

h-min = hi + d^2/(8R) + r-max

Speed of Light in Vacuum c = 299792 km/s
Earth´s Radius R = 6371 km.

Radius max
of 1. Fresnel Zone

[m]

Antenna Height min

[m]

   →top

 ↑   top D. Gütter, 2007